欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

    Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜
中文字幕免费在线观看视频一区| 欧美一区二区在线播放| 欧美日韩国产精选| 国产亚洲一区二区三区在线观看| 亚洲综合视频网| 岛国一区二区在线观看| 日韩精品一区二区三区三区免费| 亚洲三级在线看| 成人高清伦理免费影院在线观看| 日韩欧美中文字幕一区| 亚洲成人福利片| 色综合天天做天天爱| 国产喷白浆一区二区三区| 日本不卡视频在线观看| 欧美午夜一区二区三区| 中文字幕一区二区三区在线观看| 国内一区二区在线| 欧美一区二区三区在线| 亚洲影院理伦片| 色8久久人人97超碰香蕉987| 国产精品高潮呻吟| 成人深夜在线观看| 国产精品麻豆久久久| 成人激情小说乱人伦| 国产欧美一区二区三区在线老狼| 久久99久久精品| 日韩精品一区二区三区中文精品| 日韩电影在线免费| 91精品国产麻豆| 美女被吸乳得到大胸91| 日韩视频免费观看高清完整版| 蜜桃传媒麻豆第一区在线观看| 欧美高清www午色夜在线视频| 亚洲一区二区三区精品在线| 欧美日韩精品一区二区天天拍小说 | 在线观看国产91| 亚洲美女偷拍久久| 欧美主播一区二区三区| 亚洲一区二区三区四区五区黄| 欧美性大战久久久久久久| 亚洲国产欧美一区二区三区丁香婷| 在线日韩一区二区| 日本一不卡视频| 欧美精品一区二区三| 国产精品99久久久| 国产精品理论片| 欧美日韩一区精品| 精品一区二区三区香蕉蜜桃| 欧美va亚洲va香蕉在线| 成人晚上爱看视频| 亚洲一区二区在线免费看| 这里只有精品99re| 国产99久久久久久免费看农村| 中文字幕一区二区三区四区不卡| 色偷偷88欧美精品久久久 | 国产精品色婷婷| 在线视频观看一区| 免费在线观看视频一区| 国产日韩精品视频一区| 色老头久久综合| 美腿丝袜亚洲综合| 中文字幕在线观看一区二区| 欧美日韩国产片| 国产精品一区二区免费不卡| 亚洲精品视频在线观看网站| 日韩三级在线免费观看| 成人黄色电影在线 | 日韩成人精品视频| 国产视频亚洲色图| 欧美久久久久久久久| 国产精品中文字幕欧美| 亚洲综合成人在线视频| 国产亚洲欧美中文| 欧美日韩一区二区三区高清 | 亚洲激情自拍视频| 精品国产露脸精彩对白| 色婷婷av久久久久久久| 国产美女在线精品| 日韩精品电影在线| 国产精品盗摄一区二区三区| 日韩精品一区二区三区蜜臀| 在线精品视频免费播放| 懂色av一区二区三区蜜臀| 琪琪一区二区三区| 一级做a爱片久久| 国产精品理伦片| 久久综合九色综合97_久久久 | 午夜久久久影院| 国产亚洲精品中文字幕| 91精品国产综合久久精品图片| 99精品久久久久久| 国产成人免费9x9x人网站视频| 日韩和欧美一区二区| 亚洲另类春色国产| 国产精品私人自拍| 欧美精彩视频一区二区三区| 日韩精品一区二区三区在线观看| 欧美视频中文字幕| 欧美综合一区二区| 91亚洲午夜精品久久久久久| 高清在线成人网| 国产伦精品一区二区三区免费迷| 青青草97国产精品免费观看 | 综合网在线视频| 欧美—级在线免费片| 2020国产精品久久精品美国| 欧美一区二区三区四区视频| 欧美日韩免费电影| 欧美在线你懂得| 欧美日韩极品在线观看一区| 欧美日韩国产一级| 6080国产精品一区二区| 制服丝袜亚洲色图| 日韩一区二区三区免费看| 日韩精品一区二区三区在线| 玉足女爽爽91| 亚洲精品日韩一| 亚洲国产精品一区二区尤物区| 一区二区三区在线免费观看| 一区二区三区欧美亚洲| 亚洲成年人影院| 美女视频一区在线观看| 久久99精品国产.久久久久| 国产一区二区在线影院| 粉嫩av一区二区三区| 99久久精品国产一区二区三区| 一本色道久久综合亚洲aⅴ蜜桃| 色菇凉天天综合网| 制服丝袜av成人在线看| 欧美大尺度电影在线| 国产亚洲欧洲997久久综合 | 韩日精品视频一区| 成人国产精品免费网站| 99精品国产视频| 欧美一级精品在线| 中文字幕免费在线观看视频一区| 亚洲欧美乱综合| 日韩精品欧美精品| 成人网男人的天堂| 在线播放91灌醉迷j高跟美女| 日韩一区二区在线免费观看| 久久九九99视频| 亚洲日本丝袜连裤袜办公室| 天天亚洲美女在线视频| 国产精品77777| 欧美在线999| 久久伊99综合婷婷久久伊| 亚洲视频一区在线观看| 蜜桃视频第一区免费观看| 不卡电影免费在线播放一区| 欧美一区二区三区在线观看 | 欧美优质美女网站| 精品91自产拍在线观看一区| 日韩一区欧美一区| 蜜桃视频一区二区三区 | 中文字幕精品一区二区三区精品| 亚洲一区二区三区自拍| 国产精品自在在线| 91麻豆精品国产无毒不卡在线观看| 久久久久久一二三区| 午夜av电影一区| 91捆绑美女网站| 国产网站一区二区| 日产国产欧美视频一区精品 | 成人免费av网站| 日韩欧美综合一区| 亚洲制服欧美中文字幕中文字幕| 国产精品一区二区三区99| 正在播放亚洲一区| 亚洲一区免费观看| 99久久免费视频.com| 久久婷婷成人综合色| 日韩精品国产精品| 欧美日韩一区中文字幕| 亚洲欧洲日韩在线| 国产在线精品一区二区| 欧美人与禽zozo性伦| 亚洲精品成人悠悠色影视| 成人午夜精品在线| 国产欧美日韩综合| 国产一区二区三区香蕉| 欧美一区午夜视频在线观看| 一区二区三区精品久久久| 国产成人在线影院| 久久久五月婷婷| 国产一区二区在线观看免费| 日韩一区二区三区四区| 丝袜亚洲另类丝袜在线| 在线观看三级视频欧美| 亚洲青青青在线视频| 99国内精品久久| 国产精品久久久久久久久动漫| 国产成人在线视频免费播放| 精品国产区一区| 国产一区二区三区蝌蚪| 精品国产免费人成电影在线观看四季| 奇米精品一区二区三区在线观看一| 欧美日韩成人一区二区| 亚洲国产va精品久久久不卡综合| 欧美性色黄大片|