欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:Big Data Business Intelligence for Criminal Intelligence Analysis培訓
4401 人關注
(78637/99817)
課程大綱:

         Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 

 

 

=====
Day 01
=====
Overview of Big Data Business Intelligence for Criminal Intelligence Analysis

Case Studies from Law Enforcement - Predictive Policing
Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
Emerging technology solutions such as gunshot sensors, surveillance video and social media
Using Big Data technology to mitigate information overload
Interfacing Big Data with Legacy data
Basic understanding of enabling technologies in predictive analytics
Data Integration & Dashboard visualization
Fraud management
Business Rules and Fraud detection
Threat detection and profiling
Cost benefit analysis for Big Data implementation
Introduction to Big Data

Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
MPP (Massively Parallel Processing) architecture
Data Warehouses – static schema, slowly evolving dataset
MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Apache Spark for stream processing
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issues in Big Data

RDBMS – static structure/schema, does not promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Hadoop

When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS

MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
=====
Day 02
=====
Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?

Hadoop vs. Other NoSQL solutions
For interactive, random access to data
Hbase (column oriented database) on top of Hadoop
Random access to data but restrictions imposed (max 1 PB)
Not good for ad-hoc analytics, good for logging, counting, time-series
Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
Flume – Stream data (e.g. log data) into HDFS
Big Data Management System

Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence

Introduction to Machine Learning
Learning classification techniques
Bayesian Prediction -- preparing a training file
Support Vector Machine
KNN p-Tree Algebra & vertical mining
Neural Networks
Big Data large variable problem -- Random forest (RF)
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
Text analytic tool-Treeminer
Agile learning
Agent based learning
Distributed learning
Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis

Technology and the investigative process
Insight analytic
Visualization analytics
Structured predictive analytics
Unstructured predictive analytics
Threat/fraudstar/vendor profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery – failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytics
Network analytics
Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
Technology assisted review
Fraud analytics
Real Time Analytic
=====
Day 03
=====
Real Time and Scalable Analytics Over Hadoop

Why common analytic algorithms fail in Hadoop/HDFS
Apache Hama- for Bulk Synchronous distributed computing
Apache SPARK- for cluster computing and real time analytic
CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
Tools for eDiscovery and Forensics

eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
Predictive coding and Technology Assisted Review (TAR)
Live demo of vMiner for understanding how TAR enables faster discovery
Faster indexing through HDFS – Velocity of data
NLP (Natural Language processing) – open source products and techniques
eDiscovery in foreign languages -- technology for foreign language processing
Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification

Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
Network infrastructure / Large datapipe / Response ETL for real time analytic
Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
Gathering disparate data for Criminal Intelligence Analysis

Using IoT (Internet of Things) as sensors for capturing data
Using Satellite Imagery for Domestic Surveillance
Using surveillance and image data for criminal identification
Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
Combining automated data retrieval with data obtained from informants, interrogation, and research
Forecasting criminal activity
=====
Day 04
=====
Fraud prevention BI from Big Data in Fraud Analytics

Basic classification of Fraud Analytics -- rules-based vs predictive analytics
Supervised vs unsupervised Machine learning for Fraud pattern detection
Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
Social Media Analytics -- Intelligence gathering and analysis

How Social Media is used by criminals to organize, recruit and plan
Big Data ETL API for extracting social media data
Text, image, meta data and video
Sentiment analysis from social media feed
Contextual and non-contextual filtering of social media feed
Social Media Dashboard to integrate diverse social media
Automated profiling of social media profile
Live demo of each analytic will be given through Treeminer Tool
Big Data Analytics in image processing and video feeds

Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
LTFS (Linear Tape File System) and LTO (Linear Tape Open)
GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
Fundamentals of image analytics
Object recognition
Image segmentation
Motion tracking
3-D image reconstruction
Biometrics, DNA and Next Generation Identification Programs

Beyond fingerprinting and facial recognition
Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
Big Data Dashboard for quick accessibility of diverse data and display :

Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based services in Govt.
Tracking system and management
=====
Day 05
=====
How to justify Big Data BI implementation within an organization:

Defining the ROI (Return on Investment) for implementing Big Data
Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
Revenue gain from lower database licensing cost
Revenue gain from location based services
Cost savings from fraud prevention
An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
Step by Step procedure for replacing a legacy data system with a Big Data System

Big Data Migration Roadmap
What critical information is needed before architecting a Big Data system?
What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
How to estimate data growth
Case studies
Review of Big Data Vendors and review of their products.

Accenture
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
Treeminer
VMware (Part of EMC)
Q/A session

欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜
日韩欧美国产不卡| 欧美高清视频www夜色资源网| 亚洲成a天堂v人片| 亚洲与欧洲av电影| 亚洲国产综合91精品麻豆| 亚洲精品一二三四区| 一二三四社区欧美黄| 亚洲一区二区三区精品在线| 一二三区精品福利视频| 亚洲a一区二区| 喷白浆一区二区| 国产一区二区剧情av在线| 国产成人在线网站| 94-欧美-setu| 欧美日韩一区中文字幕| 日韩丝袜情趣美女图片| xfplay精品久久| 国产精品视频免费看| 一区二区三区中文字幕电影 | 视频一区欧美精品| 久久不见久久见免费视频7| 久久99精品久久久久久动态图 | 欧美www视频| 国产精品久久久一本精品| 亚洲精品va在线观看| 日韩二区三区四区| 粉嫩嫩av羞羞动漫久久久 | 国产午夜精品一区二区| 自拍偷在线精品自拍偷无码专区 | xf在线a精品一区二区视频网站| 国产清纯美女被跳蛋高潮一区二区久久w | 亚洲私人黄色宅男| 五月综合激情日本mⅴ| 国产在线视频一区二区三区| av电影天堂一区二区在线观看| 欧美日韩激情一区| 国产日韩欧美精品在线| 三级欧美韩日大片在线看| 成人av在线一区二区三区| 欧美日韩亚洲综合| 国产精品乱码人人做人人爱| 亚洲精品国产高清久久伦理二区| 老司机免费视频一区二区三区| 成人国产亚洲欧美成人综合网| 欧美精品少妇一区二区三区| 国产精品国产三级国产普通话99| 午夜精品久久久久| 色综合久久久久综合| 国产亚洲精久久久久久| 天堂成人免费av电影一区| 91香蕉国产在线观看软件| 精品国免费一区二区三区| 亚洲国产精品视频| 99久久综合精品| 欧美—级在线免费片| 久久99精品久久久久久久久久久久| 91精品福利视频| 成人欧美一区二区三区在线播放| 国内偷窥港台综合视频在线播放| 欧美精三区欧美精三区| 亚洲自拍欧美精品| 91在线国内视频| 亚洲欧洲日产国产综合网| 国产成人自拍高清视频在线免费播放| 日韩欧美你懂的| 三级一区在线视频先锋| 欧美日韩免费观看一区二区三区 | 欧美综合一区二区| 一个色综合网站| 欧美曰成人黄网| 亚洲激情在线播放| 在线日韩一区二区| 亚洲制服欧美中文字幕中文字幕| 成人动漫av在线| 亚洲欧洲精品一区二区三区不卡| 风间由美一区二区三区在线观看 | 99久久婷婷国产综合精品| 亚洲欧洲国产专区| 91视频观看视频| 一区二区三区中文字幕精品精品| 99在线视频精品| 综合久久给合久久狠狠狠97色| av一区二区三区黑人| 亚洲一区在线观看网站| 欧美久久久久久久久中文字幕| 日韩精品乱码免费| 久久亚洲综合色一区二区三区| 国产乱码精品1区2区3区| 国产女主播视频一区二区| 成人av一区二区三区| 亚洲综合色网站| 5月丁香婷婷综合| 国产真实精品久久二三区| 国产精品毛片a∨一区二区三区| av一区二区不卡| 图片区小说区国产精品视频 | 国产成都精品91一区二区三| 亚洲欧美在线视频| 91超碰这里只有精品国产| 黄色小说综合网站| 综合激情成人伊人| 日韩一区二区在线看片| 处破女av一区二区| 午夜一区二区三区在线观看| 欧美www视频| 色综合天天视频在线观看| 日产欧产美韩系列久久99| 久久久久国产免费免费| 色噜噜偷拍精品综合在线| 久久国产精品99久久人人澡| 国产精品视频线看| 91精品国产一区二区三区| 成人免费看片app下载| 日韩av电影免费观看高清完整版| 欧美高清在线一区二区| 欧美日本韩国一区二区三区视频 | 91福利国产成人精品照片| 久久99在线观看| 亚洲精品国产精品乱码不99| 精品国产免费视频| 欧美性大战久久| 99综合影院在线| 国内精品伊人久久久久av影院 | 久久97超碰国产精品超碰| 亚洲精品第1页| 日本一区二区综合亚洲| 日韩手机在线导航| 日本黄色一区二区| 懂色一区二区三区免费观看| 免费在线看一区| 婷婷综合五月天| 亚洲国产日日夜夜| 亚洲欧美日韩国产一区二区三区| 国产亚洲一区二区三区四区 | 亚洲卡通动漫在线| 国产欧美在线观看一区| 日韩欧美视频在线| 日韩精品在线一区| 欧美美女bb生活片| 欧美日韩五月天| 欧美日韩精品一区视频| 在线一区二区三区| 欧美三级中文字| 欧美伦理影视网| 欧美一区二区三区婷婷月色| 欧洲亚洲国产日韩| 欧美亚洲动漫另类| 欧美军同video69gay| 欧美日韩成人激情| 91精品国产综合久久久蜜臀图片 | 一区二区三区成人| 亚洲成人777| 免费观看日韩电影| 久久99久久久久| 国产精品一区专区| 成人一级视频在线观看| 99久久精品一区二区| 在线观看日韩精品| 6080亚洲精品一区二区| 精品91自产拍在线观看一区| 久久综合九色综合欧美98| 国产亚洲欧美日韩日本| 国产精品美女www爽爽爽| 一区二区久久久| 男女男精品视频网| 粉嫩13p一区二区三区| 97se狠狠狠综合亚洲狠狠| 欧美日韩中文国产| 日韩欧美亚洲一区二区| 欧美国产综合色视频| 亚洲一区二区三区三| 另类欧美日韩国产在线| 国产成人免费视| 欧美色偷偷大香| 国产亚洲1区2区3区| 亚洲线精品一区二区三区| 久久国产尿小便嘘嘘尿| 成人精品免费网站| 欧美精品tushy高清| 欧美国产日韩精品免费观看| 一区二区三区免费观看| 国产一区二区三区精品视频| 日本高清成人免费播放| 日韩午夜激情视频| 亚洲欧美一区二区不卡| 久久精品国产999大香线蕉| 91网址在线看| 26uuu亚洲婷婷狠狠天堂| 日韩码欧中文字| 精品伊人久久久久7777人| 色综合天天综合网国产成人综合天| 欧美精品丝袜中出| 中文字幕一区在线观看视频| 麻豆一区二区在线| 在线观看日产精品| 国产精品国产自产拍高清av| 免费在线观看成人| 欧美视频日韩视频| 日韩理论片网站| 国产精品系列在线播放|