欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:為電信服務供應商的智能大數據信息業務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數據信息業務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜
欧美写真视频网站| 中文字幕在线不卡一区| 欧美性猛交一区二区三区精品| 国产精品一级二级三级| 美女脱光内衣内裤视频久久网站 | 日日摸夜夜添夜夜添亚洲女人| 中文字幕一区在线| 国产欧美精品一区二区三区四区| 国产日韩欧美不卡在线| 国产亚洲一区二区三区| 日本一区二区三区视频视频| 亚洲欧洲精品天堂一级 | 日本特黄久久久高潮| 五月天亚洲婷婷| 日本午夜一区二区| 麻豆精品久久久| 国产乱子轮精品视频| 欧美日韩国产天堂| 欧美男人的天堂一二区| 91.麻豆视频| 久久久不卡网国产精品一区| 亚洲色图一区二区| 日本欧美一区二区| 成人少妇影院yyyy| 欧美日韩视频在线观看一区二区三区 | 亚洲午夜激情av| 免费的国产精品| 理论片日本一区| 99久久综合精品| 欧美日韩成人一区| 国产欧美精品一区二区色综合| 一区二区三区**美女毛片| 麻豆国产精品777777在线| 不卡的av中国片| 日韩欧美中文字幕一区| 亚洲靠逼com| 久久福利资源站| 欧洲精品中文字幕| 国产人久久人人人人爽| 五月激情六月综合| 99综合电影在线视频| 欧美sm美女调教| 亚洲国产精品人人做人人爽| 成人免费高清在线| 欧美一区二区三区男人的天堂| 亚洲欧洲日韩综合一区二区| 久久精品国产亚洲高清剧情介绍| 欧美天堂一区二区三区| 亚洲日本电影在线| 国产高清不卡一区二区| 欧美www视频| 喷水一区二区三区| 日本高清成人免费播放| 国产精品蜜臀av| 极品美女销魂一区二区三区| 欧美日韩一区中文字幕| 亚洲综合一二区| 91免费在线视频观看| 三级欧美韩日大片在线看| 不卡一区中文字幕| 精品国产伦一区二区三区观看方式| 亚洲国产日韩精品| 94-欧美-setu| 亚洲视频你懂的| 99久久久久免费精品国产| 久久久国产精品午夜一区ai换脸| 久久99精品久久久久久| 欧美一级夜夜爽| 久久精品免费观看| 欧美成人a∨高清免费观看| 日本欧美韩国一区三区| 日韩美女一区二区三区四区| 免费看黄色91| 26uuu国产日韩综合| 国产一区二区在线看| 久久久久久免费网| 成人av影视在线观看| 国产免费成人在线视频| 成人一级视频在线观看| 中文字幕一区二区三区四区不卡| 成人动漫在线一区| 亚洲一区二区三区自拍| 777亚洲妇女| 精品亚洲免费视频| 国产日韩精品一区二区三区| 成人h版在线观看| 亚洲欧洲精品成人久久奇米网| 色先锋资源久久综合| 日韩精品一二三区| 精品国产一区二区三区久久久蜜月 | 综合久久国产九一剧情麻豆| 91蜜桃网址入口| 一区2区3区在线看| 欧美精品 日韩| 精品一区二区三区免费观看| 中文字幕av资源一区| 色菇凉天天综合网| 麻豆精品视频在线观看视频| 久久蜜桃av一区二区天堂| 岛国av在线一区| 亚洲综合在线视频| 欧美精品一区二| 色中色一区二区| 麻豆视频一区二区| 国产精品久久久久久妇女6080| 欧美日本乱大交xxxxx| 国产成人精品三级麻豆| 日韩精品一卡二卡三卡四卡无卡| 国产欧美一区二区精品性色| 欧美日韩久久不卡| 懂色av中文一区二区三区| 日本三级亚洲精品| 亚洲视频一区二区免费在线观看| 精品剧情在线观看| 欧美日韩日本视频| 不卡高清视频专区| 国产一区中文字幕| 日韩国产在线一| 欧美二区在线观看| 91啪在线观看| 激情文学综合丁香| 天天综合天天做天天综合| 中文字幕在线观看一区二区| 久久综合五月天婷婷伊人| 欧美日韩精品欧美日韩精品一| 99视频精品全部免费在线| 久久99在线观看| 日韩电影一区二区三区四区| 亚洲一区在线看| 亚洲美女免费在线| 亚洲欧洲日韩在线| 韩国精品主播一区二区在线观看 | 亚洲综合色视频| 综合亚洲深深色噜噜狠狠网站| 久久久久久久电影| 日韩亚洲国产中文字幕欧美| 欧美精品色综合| 欧美性生活大片视频| 欧美又粗又大又爽| 99久久久精品免费观看国产蜜| 精品一区二区免费在线观看| 蜜桃av一区二区| 狠狠色丁香婷综合久久| 久久99精品一区二区三区三区| 日本欧美一区二区三区乱码| 日本vs亚洲vs韩国一区三区二区 | 成人禁用看黄a在线| 懂色av中文字幕一区二区三区| 国产精品亚洲第一区在线暖暖韩国| 麻豆精品蜜桃视频网站| 精品一区二区三区视频在线观看| 精品亚洲成a人| 国产精品中文有码| 成人av电影在线网| 色偷偷一区二区三区| 91精品福利视频| 欧美日韩成人一区二区| 欧美成人女星排行榜| 精品国产免费久久| 中文在线资源观看网站视频免费不卡| 国产精品毛片a∨一区二区三区| 欧美韩国日本一区| 亚洲欧美乱综合| 亚洲第一久久影院| 日韩精品亚洲一区二区三区免费| 精品一区二区三区影院在线午夜| 国产激情视频一区二区三区欧美 | 精品国产乱码91久久久久久网站| 国产午夜精品福利| 一区二区三区鲁丝不卡| 免费在线视频一区| av高清久久久| 91精品国产综合久久福利软件| 国产亚洲一区二区在线观看| 亚洲精品日韩一| 激情五月婷婷综合网| 不卡一区二区三区四区| 91精品婷婷国产综合久久竹菊| 中文在线一区二区| 婷婷丁香久久五月婷婷| 成人晚上爱看视频| 3d动漫精品啪啪一区二区竹菊| 国产偷国产偷精品高清尤物| 一区二区三区日本| 国产黄人亚洲片| 在线播放欧美女士性生活| 中文字幕精品—区二区四季| 日韩国产一二三区| 91亚洲精品一区二区乱码| 欧美刺激午夜性久久久久久久| 亚洲欧洲综合另类在线| 国产一区亚洲一区| 欧美天堂一区二区三区| 国产欧美日韩不卡| 毛片一区二区三区| 欧美日韩久久不卡| 一区二区三区资源| 精品免费视频一区二区| 亚洲成人福利片| 99精品视频一区|