欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

曙海教育集團(tuán)
全國(guó)報(bào)名免費(fèi)熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號(hào)) QQ:1299983702
首頁(yè) 課程表 在線聊 報(bào)名 講師 品牌 QQ聊 活動(dòng) 就業(yè)
 
Analyzing Big Financial Data with Python培訓(xùn)

 
   班級(jí)規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號(hào))
       每期人數(shù)限3到5人。
   上課時(shí)間和地點(diǎn)
開課地址:【上海】同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站)【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領(lǐng)館區(qū)1號(hào)【沈陽(yáng)分部】:沈陽(yáng)理工大學(xué)【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學(xué)院 【南京分部】:金港大廈
最新開班 (連續(xù)班 、周末班、晚班):2020年3月16日
   實(shí)驗(yàn)設(shè)備
     ☆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆合格學(xué)員免費(fèi)推薦工作
        ★實(shí)驗(yàn)設(shè)備請(qǐng)點(diǎn)擊這兒查看★
   質(zhì)量保障

        1、培訓(xùn)過(guò)程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽;
        2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費(fèi)提供課后技術(shù)支持。
        3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。

課程大綱
 
  • Introduction
  • Understanding the Fundamentals of Python
  • Overview of Using Technology and Python in Finance
  • Overview of Tools and Infrastructure
  • Python Deployment Using Anaconda
    Using the Python Quant Platform
    Using IPython
    Using Spyder
    Getting Started with Simple Financial Examples with Python
  • Calculating Implied Volatilities
    Implementing the Monte Carlo Simulation
    Using Pure Python
    Using Vectorization with Numpy
    Using Full Vectoriization with Log Euler Scheme
    Using Graphical Analysis
    Using Technical Analysis
    Understanding Data Types and Structures in Python
  • Learning the Basic Data Types
    Learning the Basic Data Structures
    Using NumPy Data Structures
    Implementing Code Vectorization
    Implementing Data Visualization in Python
  • Implementing Two-Dimensional Plots
    Using Other Plot Styles
    Implementing Finance Plots
    Generating a 3D Plot
    Using Financial Time Series Data in Python
  • Exploring the Basics of pandas
    Implementing First and Second Steps with DataFrame Class
    Getting Financial Data from the Web
    Using Financial Data from CSV Files
    Implementing Regression Analysis
    Coping with High-Frequency Data
    Implementing Input/Output Operations
  • Understanding the Basics of I/O with Python
    Using I/O with pandas
    Implementing Fast I/O with PyTables
    Implementing Performance-Critical Applications with Python
  • Overview of Performance Libraries in Python
    Understanding Python Paradigms
    Understanding Memory Layout
    Implementing Parallel Computing
    Using the multiprocessing Module
    Using Numba for Dynamic Compiling
    Using Cython for Static Compiling
    Using GPUs for Random Number Generation
    Using Mathematical Tools and Techniques for Finance with Python
  • Learning Approximation Techniques
    Regression
    Interpolation
    Implementing Convex Optimization
    Implementing Integration Techniques
    Applying Symbolic Computation
    Stochastics with Python
  • Generation of Random Numbers
    Simulation of Random Variables and of Stochastic Processes
    Implementing Valuation Calculations
    Calculation of Risk Measures
    Statistics with Python
  • Implementing Normality Tests
    Implementing Portfolio Optimization
    Carrying Out Principal Component Analysis (PCA)
    Implementing Bayesian Regression using PyMC3
    Integrating Python with Excel
  • Implementing Basic Spreadsheet Interaction
    Using DataNitro for Full Integration of Python and Excel
    Object-Oriented Programming with Python
  • Building Graphical User Interfaces with Python
  • Integrating Python with Web Technologies and Protocols for Finance
  • Web Protocols
    Web Applications
    Web Services
    Understanding and Implementing the Valuation Framework with Python
  • Simulating Financial Models with Python
  • Random Number Generation
    Generic Simulation Class
    Geometric Brownian Motion
    The Simulation Class
    Implementing a Use Case for GBM
    Jump Diffusion
    Square-Root Diffusion
    Implementing Derivatives Valuation with Python
  • Implementing Portfolio Valuation with Python
  • Using Volatility Options in Python
  • Implementing Data Collection
    Implementing Model Calibration
    Implementing Portfolio Valuation
    Best Practices in Python Programming for Finance
  • Troubleshooting
  • Summary and Conclusion
  • Closing Remarks
 
  備案號(hào):備案號(hào):滬ICP備08026168號(hào)-1 .(2024年07月24日)....................
主站蜘蛛池模板: 海晏县| 仁怀市| 平潭县| 乐亭县| 大厂| 仙居县| 永安市| 两当县| 九江县| 巴林左旗| 玉龙| 白城市| 乌恰县| 怀集县| 祁阳县| 贵德县| 四平市| 安丘市| 蓬莱市| 娄底市| 绥宁县| 常州市| 宜兰县| 恩平市| 沾化县| 闽侯县| 武义县| 左云县| 上犹县| 房山区| 正安县| 武强县| 多伦县| 金川县| 马公市| 巴里| 铅山县| 崇文区| 昭苏县| 黔西县| 建瓯市|