班級(jí)規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號(hào)) |
每期人數(shù)限3到5人。 |
上課時(shí)間和地點(diǎn) |
開(kāi)課地址:【上海】同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站)【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領(lǐng)館區(qū)1號(hào)【沈陽(yáng)分部】:沈陽(yáng)理工大學(xué)【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學(xué)院 【南京分部】:金港大廈
最新開(kāi)班 (連續(xù)班 、周末班、晚班):2020年3月16日 |
實(shí)驗(yàn)設(shè)備 |
☆資深工程師授課
☆注重質(zhì)量
☆邊講邊練
☆合格學(xué)員免費(fèi)推薦工作
★實(shí)驗(yàn)設(shè)備請(qǐng)點(diǎn)擊這兒查看★ |
質(zhì)量保障 |
1、培訓(xùn)過(guò)程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽(tīng);
2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費(fèi)提供課后技術(shù)支持。
3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。 |
課程大綱 |
|
- Introduction
- Understanding the Fundamentals of Heterogeneous Computing Methodology
- Why Parallel Computing? Understanding the Need for Parallel Computing
- Multi-Core Processors - Architecture and Design
- Introduction to Threads, Thread Basics and Basic Concepts of Parallel Programming
- Understanding the Fundamentals of GPU Software Optimization Processes
- OpenMP - A Standard for Directive-Based Parallel Programming
- Hands on / Demonstration of Various Programs on Multicore Machines
- Introduction to GPU Computing
- GPUs for Parallel Computing
- GPUs Programming Model
- Hands on / Demonstration of Various Programs on GPU
- SDK, Toolkit and Installation of Environment for GPU
- Working with Various Libraries
- Demonstration of GPU and Tools with Sample Programs and OpenACC
- Understanding the CUDA Programming Model
- Learning the CUDA Architecture
- Exploring and Setting Up the CUDA Development Environments
- Working with the CUDA Runtime API
- Understanding the CUDA Memory Model
- Exploring Additional CUDA API Features
- Accessing Global Memory Efficiently in CUDA: Global Memory Optimization
- Optimizing Data Transfers in CUDA Using CUDA Streams
- Using Shared Memory in CUDA
- Understanding and Using Atomic Operations and Instructions in CUDA
- Case Study: Basic Digital Image Processing with CUDA
- Working with Multi-GPU Programming
- Advanced Hardware Profiling and Sampling on NVIDIA / CUDA
- Using CUDA Dynamic Parallelism API for Dynamic Kernel Launch
- Summary and Conclusion
|