欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

          R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)

 

 

 

R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用
基礎(chǔ)
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級(jí)
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實(shí)做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實(shí)做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級(jí)
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實(shí)做與寫作范例,涵蓋自動(dòng)化演算6個(gè)機(jī)器學(xué)習(xí)方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實(shí)做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實(shí)做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 璧山县| 美姑县| 福贡县| 景德镇市| 五常市| 定兴县| 曲靖市| 白山市| 余姚市| 三台县| 手游| 遵义县| 界首市| 南澳县| 和龙市| 寿光市| 元阳县| 阳江市| 新巴尔虎右旗| 宁强县| 清涧县| 江安县| 论坛| 海城市| 安化县| 乌拉特中旗| 镇坪县| 贡觉县| 余庆县| 西宁市| 百色市| 安康市| 钟山县| 湘潭县| 桑日县| 谢通门县| 福州市| 镇赉县| 蓝山县| 东丽区| 报价|